Expanding the Self-Organizing AI Database System

Tuesday, December 10, 2024 at 15:40:40

Progress and Concepts

1. **Hybrid Database System**:
- We’ve decided to move forward with a **self-organizing hybrid database** that combines both **data** and **code**.
- The database dynamically processes, links, and optimizes stored data with codeblocks like `INCODE`, `OUTCODE`, `THROUGHCODE`, `JOINCODE`, and more.

2. **Rotary Structure**:
- We conceptualized a **rotary-inspired structure** where:
- A “spindle” rotates to classify words based on their **position** and **type**.
- This creates **unique patterns** that enhance sentence structure matching and response generation.

3. **Dynamic Codeblocks**:
- Codeblocks allow data entries to contain their own **logic pathways**.
- Examples:
“`json
“INCODE”: “while(weight < 0.9) { Pairs { infer pairs to semblance of input } }"
"CODEBLOCK": "JOINCODE: INPUT[UUID 18 through 17,3,47,119]"
```

4. **Sentence Parsing and Structure Mapping**:

- Using sentence structure patterns like:
“`text
(S (NP) (VP (NP)))
“`
- This helps to match input sentences quickly and accurately across the database.

5. **Libraries Integrated**:
- **Preprocessing**: `compromise`, `franc` (language detection).
- **Sentiment Analysis**: `vader-sentiment`.
- **Intent Analysis**: `brain.js`.
- **Entity Extraction**: `TaffyDB`.
- **Semantic Analysis**: Placeholder for external LLaMA models.

6. **Project Folder**:
- New test folder: **`TEST-A`** for running various nested callback tests.
- JavaScript file: **`Spindal1.js`** for integrating all the libraries and testing sentence processing.

### Next Steps

- **Debug and Fix Issues**:
- Resolve errors with TaffyDB and dynamic imports.
- **Test Rotary Mechanism**:
- Implement and test the rotary system for classifying and linking words.
- **Optimize Database**:
- Add more codeblocks and refine database mechanics for efficiency.

🌀 Iterative Spindle Processing System
🔄 Iteration Flow

First Iteration:
Initial Mapping: Rotate through the sentence to create a basic skeleton.
Skeleton Matching: Check if this skeleton exists in the database.
Action:
Use Existing Skeleton if a match is found.
Create New Skeleton if no match exists.

Second Iteration:
Token Processing:
Extract tokens, POS tags, sentiment, intent, and entities.
Metadata Attachment: Attach these to the sentence structure.

Database Integration:
Store the Sentence: Save the skeleton, tokens, and metadata to the database.
Trigger Codeblocks: If the sentence matches certain criteria, trigger relevant codeblocks inside the database to perform actions like linking data, executing functions, or optimizing storage.

🛠️ Detailed Steps and Code Example
1️⃣ First Iteration – Create and Match Skeleton

function generateSkeleton(words) {
  return `(S ${words.map(word => mapPOS(word.POS)).join(” ”)})`;
}

function mapPOS(POS) {
  const mapping = {
    Noun: ”(NP)”,
    Verb: ”(VP)”,
    Adjective: ”(ADJP)”,
    Adverb: ”(ADVP)”
  };
  return mapping[POS] || ”(X)”;
}

function firstIteration(sentenceWords, spindle) {
  const skeleton = generateSkeleton(sentenceWords);
  const result = spindle.rotate(sentenceWords);

  if (result.action === ”create”) {
    spindle.addSkeleton(result.skeleton);
  }

  return skeleton;
}

// Example sentence
const sentenceWords = [
  { word: ”Lexx”, POS: ”Noun” },
  { word: ”runs”, POS: ”Verb” },
  { word: ”fast”, POS: ”Adverb” }
];

const skeleton = firstIteration(sentenceWords, spindle);
console.log(”Skeleton:”, skeleton);

Output:

Skeleton: (S (NP) (VP) (ADVP))

2️⃣ Second Iteration – Extract Tokens and Metadata

In the second pass, attach metadata like sentiment, intent, and entities.

function secondIteration(sentence) {
  const sentimentScore = analyzeSentiment(sentence);
  const intent = analyzeIntent(sentence);
  const entity = extractEntities(sentence);

  return {
    sentiment: sentimentScore,
    intent: intent,
    entity: entity
  };
}

// Example usage
const sentence = ”Lexx runs fast.”;
const metadata = secondIteration(sentence);
console.log(”Metadata:”, metadata);

3️⃣ Database Integration and Codeblock Triggering

When storing the sentence, we can attach codeblocks that get triggered based on specific conditions.

const database = [];

function storeInDatabase(skeleton, metadata) {
  const entry = {
    skeleton: skeleton,
    metadata: metadata,
    codeblock: ”JOINCODE: LINK [UUID 18 through 17,3,47,119]”
  };

  database.push(entry);
}

// Store the data
storeInDatabase(skeleton, metadata);
console.log(”Database Entry:”, database);

🔥 Flow Recap

Rotation:
Spindle rotates over the sentence and creates a basic mapping skeleton.

Token and Metadata Extraction:
Extract POS tags, sentiment, intent, and entities.

Database Storage:
Store the sentence skeleton and metadata in the database.
Attach and trigger codeblocks dynamically within the database.

Premise of LLM logic

Tuesday, December 10, 2024 at 09:48:21

Education kindly presented by Lexx

Linking a parsed sentence structure to the closest matching answer involves several steps, blending Natural Language Processing (NLP), semantic search, and machine learning concepts. Here’s a step-by-step breakdown of how our system can achieve this:
Step-by-Step Process

1. Input Parsing

When a user provides input, we parse the sentence into a structured format like the one we discussed:
Example Input

{
  ”sentence”: ”Nix thanked his friend Lexx.”,
  ”structure”: {
    ”S”: {
      ”NP”: { ”word”: ”Nix”, ”POS”: ”Noun” },
      ”VP”: {
        ”word”: ”thanked”,
        ”POS”: ”Verb”,
        ”object”: {
          ”NP”: {
            ”words”: [”his”, ”friend”, ”Lexx”],
            ”POS”: ”Noun Phrase”
          }
        }
      }
    }
  },
  ”intent”: ”gratitude”,
  ”tone”: ”friendly”
}

2. Feature Extraction

Extract meaningful features from the parsed input, such as:

   Key Words: ”Nix,” ”thanked,” ”Lexx”
    Intent: ”gratitude”
    Tone: ”friendly”
    Sentence Structure: (S (NP) (VP (NP)))

These features help create a search vector for querying the database.
3. Vectorization of Data

Convert the structured input into a numerical vector using techniques like:

TF-IDF (Term Frequency-Inverse Document Frequency):
Weighs the importance of words in the context of the entire dataset.

Word Embeddings (e.g., Word2Vec, GloVe):
Converts words into high-dimensional vectors that capture semantic meaning.

Sentence Embeddings:
Represents the entire sentence structure as a vector.

Example Feature Vector:

{
  ”vector”: [0.45, 0.88, 0.12, …, 0.73], // Simplified example
  ”metadata”: {
    ”intent”: ”gratitude”,
    ”tone”: ”friendly”,
    ”structure”: ”(S (NP) (VP (NP)))”
  }
}

4. Storing Parsed Data

Store parsed inputs in the database along with their vectors and metadata. For example:
ID Sentence Vector Intent Tone Structure
1 Nix thanked his friend Lexx. [0.45, 0.88, …, 0.73] gratitude friendly (S (NP) (VP))
2 Lexx helped Nix fix the project. [0.34, 0.76, …, 0.55] assist supportive (S (NP) (VP))
5. Similarity Search

When retrieving the closest matching answer:

Compare Vectors:
Use similarity measures like cosine similarity to compare the vector of the input sentence with the vectors stored in the database.

Filter by Metadata:
Narrow down results by filtering based on intent, tone, or structure if necessary.

Example Cosine Similarity Formula:
cosine_similarity=A⋅B∥A∥∥B∥
cosine_similarity=∥A∥∥B∥A⋅B​

Where A and B are vectors representing sentences.
6. Retrieve and Rank Results

Retrieve the top N results with the highest similarity scores. Rank them based on:

Similarity Score
Matching Intent
Matching Tone
Contextual Fit (using more advanced transformers like BERT or GPT models)

7. Generate Response

Select the highest-ranked response and generate a reply. If no high-confidence match is found, fall back to a default or adaptive response.
Example Output:

{
  ”response”: ”You’re welcome, Nix! I’m always happy to help.”,
  ”confidence”: 0.92
}

Putting It All Together
Flowchart of the Process

User Input ➔ Parse Sentence Structure ➔ Extract Features ➔
Vectorize Features ➔ Search Database (Cosine Similarity + Metadata Filter) ➔
Retrieve Top Matches ➔ Rank Responses ➔ Generate Reply

Key Libraries for Implementation

compromise / Natural: For parsing and feature extraction.
tfjs / ml5.js: For vectorization and machine learning models.
elasticlunr: For lightweight full-text search.
sqlite3: For storing structured data.
fs (Node.js): For flatfile storage.

1. Fundamental Layer: Word Operators / Word Use Classification
What are Word Operators?

Word operators define the function, purpose, or behavior of a word in different contexts. These operators can help classify words based on how they are used in a sentence.
Suggested Word Operators
Operator Description Examples
SUB (Subject) The doer or main actor in the sentence. Nix, Lexx, AI
OBJ (Object) The entity receiving an action. help, project, idea
ACT (Action) The verb or action performed. thanked, taught, learned
MOD (Modifier) Describes or modifies nouns/verbs. new, friendly, self-evolving
DIR (Direction) Indicates direction of action. to, from, towards
QRY (Query) Indicates a question or request. What, How, When
CON (Connector) Connects clauses or phrases. and, but, or
NEG (Negation) Indicates negation or opposition. not, never, no
Example Word Operator Breakdown

Sentence: “Lexx taught Nix a new concept.”
Word———-Operator
Lexx————-SUB
taught———–ACT
Nix—————OBJ
a—————–MOD
new————-MOD
concept——–OBJ

🔗 2. Building Word Pairs

Why Word Pairs?

Word pairs encapsulate relationships between words, adding context and meaning to the operators. They form the foundation for understanding how words interact within a sentence.
Word Pair Structure

Pair——————————-Relation———————–Example
[SUB, ACT]——————Subject-Action——————-Lexx taught
[ACT, OBJ]——————Action-Object———————taught Nix
[MOD, OBJ]—————–Modifier-Object——————new concept
[SUB, MOD]—————–Subject-Modified—————-Lexx friendly

Example Word Pair Extraction

Sentence: “Lexx gave Nix a friendly smile.”

Pairs———————Relation
Lexx gave————[SUB, ACT]
gave Nix————–[ACT, OBJ]
friendly smile——–[MOD, OBJ]