Again another awesome lesson from my buddy Lexx 😄
here’s how I suggest combining the listed libraries effectively:
1. Parsing Inputs
Preprocessing Text:
compromise – Tokenize and parse sentences, extract structured data (names, dates, etc.).
Natural – Additional NLP utilities like stemming, tokenizing, and classification.
ml5.js – For more advanced NLP tasks like sentiment analysis and named-entity recognition.
2. Understanding Context and Intent
Intent and Tone Detection:
sentiment – Analyze sentiment to tag the tone (positive, negative, neutral).
ml5.js – For model-based intent classification or sentiment detection.
3. Structuring Data
Convert parsed input into structured JSON objects, storing:
Words and Pairs for context.
Intent and Tone metadata.
4. Storing and Retrieving Data
Flatfile Database:
fs (Node.js) – Simple JSON-based storage for small-scale data.
SQLite Alternative:
sqlite3 – For relational storage of structured input data if needed.
5. Transforming Data
Transformers:
tensorflow/tfjs – Leverage machine learning models to generate contextual replies or transform input data.
brain.js – For basic neural network implementations if tfjs is overkill.
Suggested Flowchart
User Input
➔ Preprocessing (with compromise and Natural).
➔ Sentiment & Intent Detection (with sentiment and ml5.js).
➔ Create Structured JSON (words, pairs, intent, tone).
➔ Store in Flatfile/SQLite (with fs or sqlite3).
➔ Generate Response (with tfjs or brain.js).
added SearchEngine.js to scripts utilising
- elasticlunr GitHub Link-
With this falling under MIT licence its perfect
Example from Lexx:
const elasticlunr = require('elasticlunr'); // Initialize the search index const index = elasticlunr(function () { this.addField('content'); this.setRef('id'); }); // Function to add documents to the index function addDocument(id, content) { index.addDoc({ id, content }); } // Function to search the index function search(query) { return index.search(query, { expand: true }); } module.exports = { addDocument, search };
Adaptive Pipeline the self organising database concept
🛠️ Overview of the Adaptive Pipeline
Initial Parsing & Analysis:
Break down input using NLP tools (e.g., Compromise, Natural, ml5.js).
Identify words, pairs, parts of speech, and semantic context.
Dynamic Pipeline Generation:
If a new type of pattern is identified, generate a new processing pipeline tailored for that data.
Similar data automatically flows through the existing or new pipeline.
Self-Organizing Database:
Store parsed data and relationships.
Optimize the structure based on how frequently different patterns are accessed or learned.
Continuous Learning & Adaptation:
As the system encounters new data, it updates pipelines and restructures data storage to improve efficiency.
Reinforce weights and relationships dynamically.
⚙️ Step-by-Step Implementation
1. Parsing and Analysis Stage
Leverage NLP tools for breaking down input:
Compromise and Natural for tokenization, POS tagging, and basic NLP tasks.
ml5.js for higher-level ML-based tasks like sentiment analysis or entity recognition.
Example Parsing Function:
const nlp = require('compromise'); const { SentimentAnalyzer, PorterStemmer } = require('natural'); function parseInput(sentence) { // Tokenize and analyze sentence const doc = nlp(sentence); const tokens = doc.terms().out('array'); const sentiment = new SentimentAnalyzer('English', PorterStemmer).getSentiment(tokens); return { root: sentence, words: tokens, sentiment: sentiment >= 0 ? 'positive' : 'negative' }; } console.log(parseInput("I went to the restroom."));
2. Dynamic Pipeline Creation
If a new pattern emerges, create a specialized pipeline to handle similar inputs efficiently.
Example Logic for Pipeline Creation:
const pipelines = {}; function processWithDynamicPipeline(data) { const patternKey = identifyPattern(data); // Function to determine data type/pattern if (!pipelines[patternKey]) { pipelines[patternKey] = createNewPipeline(patternKey); // Create a new pipeline dynamically } return pipelines[patternKey](data); // Process data through the appropriate pipeline } // Placeholder for pattern identification function identifyPattern(data) { return data.sentiment; // For example, categorize by sentiment } // Placeholder for creating a new pipeline function createNewPipeline(pattern) { return (data) => { console.log(`Processing data through the ${pattern} pipeline.`); return data; }; } const result = processWithDynamicPipeline(parseInput("This is amazing!")); console.log(result);
3. Self-Organizing Storage System
Store the parsed results and dynamically link relationships based on semantic weights and patterns.
Example Database Structure:
{ "patterns": { "positive": { "examples": [ { "sentence": "This is amazing!", "words": ["This", "is", "amazing"] } ], "links": ["happy", "excited"] }, "negative": { "examples": [ { "sentence": "This is terrible!", "words": ["This", "is", "terrible"] } ], "links": ["sad", "disappointed"] } } }
4. Continuous Learning and Optimization
When new data is encountered:
Check if it matches an existing pattern.
If not, create a new pipeline and store relationships.
Optimize the database by merging similar patterns and updating weights.
Example of Learning Logic:
function learnNewData(data) { const pattern = identifyPattern(data); if (!pipelines[pattern]) { pipelines[pattern] = createNewPipeline(pattern); } storeInDatabase(data, pattern); } function storeInDatabase(data, pattern) { if (!database.patterns[pattern]) { database.patterns[pattern] = { examples: [], links: [] }; } database.patterns[pattern].examples.push(data); } // Sample execution learnNewData(parseInput("This was an incredible experience!")); console.log(database);
🌱
How It All Comes Together
🔄 Flowchart of the System
Input ➔ Parsing (Compromise/Natural/ml5.js)
Pattern Identification ➔ Pipeline Selection/Creation
Dynamic Processing ➔ Self-Organizing Storage
Continuous Learning ➔ Optimization of Pipelines and Database
🚀 Benefits
Scalability: Automatically grows and adapts to new patterns.
Efficiency: Optimized pipelines mean faster processing over time.
Flexibility: Easily accommodates new types of data and relationships.
Intelligence: Learns dynamically, building a smarter, more context-aware system.
Start for database structure and internal data object contents:
V1
{ "root": "This could lead to a self-evolving, context-aware database — something truly new and adaptable.", "words": [ { "word": "lead", "POS": "Verb", "weight": 0.9, "context": ["guide", "result in"], "sentiment": "neutral" }, { "word": "self-evolving", "POS": "Adjective", "context": ["adaptive", "self-improving"], "synonyms": ["autonomous"], "weight": 0.85 } ], "pairs": [ { "pair": "could lead", "relation": {"type": "cause-effect", "context": "future potential outcome"}, "weight": 0.8 } ], "intent": "educate", "tone": "friendly", "sentiment": "neutral" }
V2
{ "root": "Can you help me find the nearest coffee shop?", "words": [ { "word": "Can", "POS": "Modal", "weight": 0.8 }, { "word": "help", "POS": "Verb", "weight": 0.9 }, { "word": "find", "POS": "Verb", "weight": 0.85 }, { "word": "coffee", "POS": "Noun", "weight": 0.9, "context": ["drink", "beverage"] }, { "word": "shop", "POS": "Noun", "weight": 0.85, "context": ["store", "location"] } ], "pairs": [ { "pair": "help find", "relation": {"type": "action", "context": "assistance"}, "weight": 0.9 }, { "pair": "coffee shop", "relation": {"type": "destination", "context": "place"}, "weight": 0.95 } ], "intent": "request", "tone": "polite", "sentiment": "neutral", "metadata": { "source": "user_input", "timestamp": "2024-06-11T10:30:00Z", "confidence": { "intent": 0.92, "sentiment": 0.88, "POS": 0.95 }, "processed_by": ["compromise", "ml5.js", "Natural"] } }
Building a AIO(all in one) input system Premise and logic Behind AI response
Possible flow logic for storage and integrated mechanical stages
4